
Malware

M alware is notoriously difficult to combat be-
cause it appears and spreads so quickly. Most
security products such as virus scanners
look for signatures—characteristic byte se-

quences—to identify malicious code. Malware, however,
has adapted to that approach. Poly- or metamorphic
worms avoid detection by changing their appearance, for
example, whereas flash worms stealthily perform recon-
naissance without infecting vulnerable machines, waiting
to pursue strategic spreading plans that can infect thou-
sands of machines within seconds.

In the face of such automated threats, security re-
searchers can’t combat malicious software using manual
methods of disassembly or reverse engineering. There-
fore, analysis tools must analyze malware automatically,
effectively, and correctly. Automating this process
means that the analysis tool should create detailed re-
ports of malware samples quickly and without user
intervention. Analysts could then use the machine-
readable reports to initiate automated responses—auto-
matically updating an intrusion detection system’s
signatures, for example, and protecting networks from
new malware on the fly. An effective analysis tool
must log the malware’s relevant behaviors—the tool
shouldn’t overlook any of the executed functionality
because analysts will use the information to realistically
assess the threat. Finally, the tool should correctly ana-
lyze the malware—the sample should initiate every
logged action to avoid false positives.

In this article, we describe the design and implemen-
tation of CWSandbox, a malware analysis tool that fulfills
our three design criteria of automation, effectiveness, and
correctness for the Win32 family of operating systems.

We show how to
use API hooking
and dynamic linked library (DLL) injection techniques
to implement the necessary rootkit functionality to avoid
detection by the malware. We acknowledge that these
techniques aren’t new; however, we’ve assembled the
techniques in a unique combination that provides a fully
functional, elegantly simple, and arguably powerful auto-
mated malware analysis tool.

Behavior-based malware analysis
Combining dynamic malware analysis, API hooking,
and DLL injection within the CWSandbox lets analysts
trace and monitor all relevant system calls and generates
an automated, machine-readable report that describes

• the files the malware sample created or modified;
• the changes the malware sample performed on the

Windows registry;
• which DLLs the malware loaded before execution;
• which virtual memory areas it accessed;
• the processes that it created;
• the network connections it opened and the informa-

tion it sent; and
• other information, such as the malware’s access to pro-

tected storage areas, installed services, or kernel drivers.

CWSandbox’s reporting features aren’t perfect—that
is, it reports only the malware’s visible behavior and not
how it’s programmed, and using the CWSandbox might
cause some harm to other machines connected to the
network. Yet, the information derived from the
CWSandbox for even the shortest of time periods is sur-

Toward Automated Dynamic
Malware Analysis Using
CWSandbox

32 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/07/$25.00 © 2007 IEEE ■ IEEE SECURITY & PRIVACY

The authors present CWSandbox, which executes malware

samples in a simulated environment, monitors all system

calls, and automatically generates a detailed report to

simplify and automate the malware analyst’s task.

CARSTEN

WILLEMS,
THORSTEN

HOLZ , AND

FELIX FREILING

University of
Mannheim,
Germany

Malware

prisingly rich; in most cases, it’s more than sufficient to
assess the danger originating from malware.

In the following paragraphs, we introduce the individ-
ual building blocks and techniques behind CWSandbox.

Dynamic malware analysis
Dynamic analysis observes malware behavior and ana-
lyzes its properties by executing the malware in a simu-
lated environment—in our case, the sandbox. Two
different approaches to dynamic malware analysis exist,
each resulting in different granularity and quality:

• taking an image of the complete system state before
malware execution and comparing it to the complete
system state after execution; and

• monitoring the malware’s actions during execution
with the help of a specialized tool, such as a debugger.

The first option is easier to implement but delivers
more coarse-grained results, which sometimes are suffi-
cient to gain an overview of what a given binary does.
This approach analyzes only the malware’s cumulative ef-
fects without taking into account dynamic changes—
such as the malware generating a file during execution
and deleting it before termination, for example. The sec-
ond approach is harder to implement, but we chose to use
it in the CWSandbox because it delivers much more de-
tailed results.

Dynamic analysis has a drawback: it analyzes only a
single malware execution at a time. In contrast, static mal-
ware analysis analyzes the source code, letting analysts
observe all possible malware executions at once. Static
analysis, however, is rather difficult to perform because
the malware’s source code isn’t usually available. Even if
it is, you can never be sure that undocumented modifi-
cations of the binary executable didn’t occur. Addition-
ally, static analysis at the machine code level can be
extremely cumbersome because malware often uses code-
obfuscation techniques such as compression, encryption,
or self-modification to evade decompilation and analysis.

API hooking
Programmers use the Windows API to access system re-
sources such as files, processes, network information, the
registry, and other Windows areas. Applications use the
API rather than making direct system calls, offering the
possibility for dynamic analysis if we can monitor the rel-
evant API calls and their parameters. The Windows
system directory contains the API, which consists of sev-
eral important DLLs, including kernel32.dll,
ntdll.dll, ws2 32.dll, and user32.dll.

To observe a given malware sample’s control flow, we
need to access the API functions. One possible way to
achieve this is by hooking—intercepting a call to a func-
tion. When an application calls a function, it’s rerouted

to a different location where customized code—the
hook or hook function—resides. The hook then per-
forms its own operations and transfers control back to
the original API function or prevents its execution com-
pletely. If hooking is done properly, it’s hard for the call-
ing application to detect the hooked API function or
that it’s called instead of the original function. In our
case, the malware could try to detect the hooking func-
tion, so we must carefully implement it and try to hide
the analysis environment from the malware process as
much as possible.

Several different methods let hook functions intercept
system calls from potentially malicious user applications
on their way to the kernel.1 For example, you can inter-
cept the execution chain either inside the user process in
one or multiple parts of the Windows API or inside the
Windows kernel by modifying the interrupt descriptor
table (IDT) or the system service dispatch table (SSDT).
Other methods have different advantages, disadvantages,
and complexity. We use in-line code overwriting because
it’s one of the more effective and efficient methods.

In-line code overwriting directly overwrites the
DLL’s API function code that’s loaded into the process
memory. Therefore, calls to the API functions are
rerouted to the hook function, regardless of when they
occur or whether they’re linked implicitly or explicitly.
Implicit linking occurs when an application’s code calls
an exported DLL function, whereas applications must
make a function call to explicitly load the DLL at runtime
with explicit linking. We can overwrite the function
code using the following steps:

1. Create a target application in suspended mode. Win-
dows loads and initializes the application and all im-
plicitly linked DLLs, but it doesn’t start the main
thread so the target application doesn’t perform any
operations.

2. When the initialization work is done, CWSandbox
looks up every to-be-hooked function in the DLL’s
export address table (EAT) and retrieves their code
entry points.

3. Save the original code in advance so you can later re-
construct the original API function.

4. Overwrite the first few instructions of each API
function with a JMP (or a call) instruction that

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 33

In the face of such threats, security

researchers can’t combat malicious

software using manual methods of

disassembly or reverse engineering.

Malware

leads to the hook function.
5. To complete the process, hook the LoadLibrary

and LoadLibraryEx API functions, which allow
the explicit binding of DLLs.

If an application loads the DLL dynamically at runtime,
you can use this same procedure to overwrite the func-
tion entry points. The CWSandbox carries out these
steps in the initialization phase to set up the hooking
functions.

Figure 1a shows the original function code for Cre-
ateFileA, which is located in kernel32.dll. The
instructions are split into two blocks: the first marks the
block that we’ll overwrite to delegate control to our
hook function; the second block includes the instruc-
tions that the API hook won’t touch. Figure 1b shows the
situation after we installed the hook. We overwrite the

first six bytes of each to-be-analyzed function with a JMP
instruction to our hook code. In the hook function, we
can save the called API function’s parameters or modify
them if necessary. Then, we execute the bytes that we
overwrote in the first phase and then JMP back to execute
the rest of the API function. There’s no need to call it
with a JMP instruction: the hook function can call the
original API with a CALL operation and regain control
when the called API function performs the RET. The
hook function then analyzes the result and modifies it if
necessary. Holy Father offers one of the most popular and
detailed descriptions of this approach,2 and Microsoft also
offers a library called Detours for this purpose (www.
research.microsoft.com/sn/detours).

To offer a complete hooking overview, we must men-
tion system service hooking, which occurs at a lower
level within the Windows operating system and isn’t con-
sidered to be API hooking. Two additional possibilities
exist for rerouting API calls: we can modify an entry in
the IDT such that Int 0x2e, which is used for invoking
system calls, points to the hooking routine, or we can ma-
nipulate the entries in the SSDT so that the system calls
can be intercepted depending on the service IDs. We
don’t use these techniques because API hooking is much
easier to implement and delivers more accurate results. In
the future, we might extend CWSandbox to use kernel
hooks because they’re more complicated to detect.

On a side note, programs that directly call the kernel
to avoid using the Windows API can bypass API hooking
techniques. However, this is rather uncommon because
the malware author must know the target operating sys-
tem, its service pack level, and other information in ad-
vance. Our results show that most malware authors
design autonomous-spreading malware to attack large
user bases, so they commonly use the Windows API.

DLL code injection
DLL code injection lets us implement API hooking in a
modular and reusable way. However, API hooking with
inline code overwriting makes it necessary to patch the
application after it has been loaded into memory. To be
successful, we must copy the hook functions into the
target application’s address space so they can be called
from within the target—this is the actual code injec-
tion—and bootstrap the API hooks in the target appli-
cation’s address space using a specialized thread in the
malware’s memory.

How can we insert the hook functions into the
process running the malware sample? It depends on the
hooking method we use. In any case, we have to manip-
ulate the target process’s memory—changing the appli-
cation’s import address table (IAT), changing the loaded
DLLs’ export address table (EAT), or directly overwriting
the API function code. In Windows, we can implant and
install API hook functions by accessing another process’s

34 IEEE SECURITY & PRIVACY ■ MARCH/APRIL 2007

Figure 1. In-line code overwriting. (a) shows the original function
code. In (b), the JMP instruction overwrites the API function’s first
block (1) and transfers control to our hook function whenever the
to-be-analyzed application calls the API function. (2) The hook
function performs the desired operations and then calls the
original API function’s saved stub. (3) The saved stub performs the
overwritten instructions and branches to the original API function’s
unmodified part.

Kernel32.dll-CreateFileA (*without* Hook):

77E8C1F7
77E8C1F8
77E8C1FA
77E8C1FD
77E8C202
77E8C1FD
…
77E8C226

PUSH ebp
MOV ebp, esp
PUSH SS:[ebp+8]

CALL +$0000d265
TEST eax, eax
JNZ
…
RET

Kernel32.dll-CreateFileA (*with* Hook):

77E8C1F7
77E8C1FD
77E8C202
77E8C1FD
…
77E8C226

CALL +$0000d265
TEST eax, eax
JNZ +$05
…
RET

JMP [CreatFileA-Hook]

PUSH ebp
MOV ebp, esp
PUSH SS:[ebp+8]

JMP $77E8C1FD

Application.CreatFileA-Hook:

2005EDB7
…
2005EDF0

-custom hook code-
…
JMP [CreatFileA-SavedStub]

Application.CreatFileA-SavedStub:

21700000
21700001
21700003
21700006

1

2

3

(a)

(b)

Malware

virtual memory and executing code in a different
process’s context.

Windows kernel32.dll offers the API functions
ReadProcessMemory and WriteProcessMemory,
which lets the CWSandbox read and write to an arbi-
trary process’s virtual memory, allocating new memory
regions or changing an already allocated memory re-
gion’s using the VirtualAllocEx and Virtual-
ProtectEx functions.

It’s possible to execute code in another process’s con-
text in at least two ways:

• suspend one of the target application’s running threads,
copy the to-be-executed code into the target’s address
space, set the resumed thread’s instruction pointer to the
copied code’s location, and then resume the thread; or

• copy the to-be-executed code into the target’s address
space and create a new thread in the target process with
the code location as the start address.

With these building blocks in place, it’s now possible to
inject and execute code into another process.

The most popular technique is DLL injection, in
which the CWSandbox puts all custom code into a DLL
and the hook function directs the target process to load
this DLL into its memory. Thus, DLL injection fulfills
both requirements for API hooking: the custom hook
functions are loaded into the target’s address space, and
the API hooks are installed in the DLL’s initialization rou-
tine, which the Windows loader calls automatically.

The API functions LoadLibraryor LoadLibrary-
Ex perform the explicit DLL linking; the latter allows
more options, whereas the first function’s signature is
very simple—the only parameter it needs is a pointer to
the DLL name.

The trick is to create a new thread in the target
process’s context using the CreateRemoteThread
function and then setting the code address of the API
function LoadLibrary as the newly created thread’s
starting address. When the to-be-analyzed application
executes the new thread, the LoadLibrary function is
called automatically inside the target’s context. Because
we know kernel32.dll’s location (always loaded at
the same memory address) from our starter application,
and know the LoadLibrary function’s code location,
we can also use these values for the target application.

CWSandbox architecture
With the three techniques we described earlier set up, we
can now build the CWSandbox system that’s capable of
automatically analyzing a malware sample. This system
outputs a behavior-based analysis; that is, it executes the
malware binary in a controlled environment so that we
can observe all relevant function calls to the Windows
API, and generates a high-level summarized report from

the monitored API calls. The report provides data for
each process and its associated actions—one subsection
for all accesses to the file system and another for all net-
work operations, for example. One of our focuses is on
bot analysis, so we spent considerable effort on extracting
and evaluating the network connection data.

After it analyzes the API calls’ parameters, the sand-
box routes them back to their original API functions.
Therefore, it doesn’t block the malware from integrating
itself into the target operating system—copying itself to
the Windows system directory, for example, or adding
new registry keys. To enable fast automated analysis, we
execute the CWSandbox in a virtual environment so that
the system can easily return to a clean state after complet-
ing the analysis process. This approach has some draw-
backs—namely, detectability issues and slower
execution—but using CWSandbox in a native environ-
ment such as a normal commercial off-the-shelf system
with an automated procedure that restores the system to a
clean state can help circumvent these drawbacks.

The CWSandbox has three phases: initialization, exe-
cution, and analysis. We discuss each phase in more detail
in the following sections.

Initialization phase
In the initialization phase, the sandbox, which consists of
the cwsandbox.exe application and the cwmoni-
tor.dll DLL, sets up the malware process. This DLL
installs the API hooks, realizes the hook functions, and
exchanges runtime information with the sandbox.

The DLL’s life cycle is also divided into three phases:
initialization, execution, and finishing. The DLL’s main
function is to handle the first and last phases; the hook
functions handle the execution phase. DLL operations
are executed during the initialization and finishing

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 35

Figure 2. CWSandbox overview. CWSandbox.exe creates a new
process image for the to-be-analyzed malware binary and then injects
the cwmonitor.dll into the target application’s address space. With
the help of the DLL, we perform API hooking and send all observed
behavior via the communication channel back to cwsandbox.exe. We
use the same procedure for child or infected processes.

Malware application child

cwmonitor.dll

Executes

Communication

Executes

Malware application

cwmonitor.dll

cwsandbox.exe

Communication

Malware

phases and every time one of the hooked API functions
is called. Additionally, the DLL informs the sandbox
when the malware starts a new process or injects code
into a running process. As Figure 2 shows, the sandbox
then injects a new instance of the DLL into the newly
created or existing process so that it captures all API calls
from this process.

Execution phase
If everything initializes correctly, malware processing re-
sumes and the execution phase starts. Otherwise, the
sandbox kills the newly created malware process and ter-
minates. During the malware’s execution, the sandbox
reroutes the hooked API calls to the referring hook func-
tions in the DLL, which inspects the call parameters, in-
forms the sandbox about the API calls in the form of
notification objects, and then delegates control to the

36 IEEE SECURITY & PRIVACY ■ MARCH/APRIL 2007

Related work in malware behavior analysis

Several tools exist for automatically analyzing malicious software

behaviors. Despite some similarities, our CWSandbox has the

advantage of generating a detailed, behavior-based analysis report

and automating the whole process to a high degree.

The Norman SandBox (http://sandbox.norman.no) simulates an

entire computer and a connected network by reimplementing the

core Windows system and executing the malware binary within the

simulated environment. It’s also possible to execute the malware

binary with a live Internet connection. The company’s Web site

features implementation details, a description of the underlying

technology, and a live demo. Such environments are mostly trans-

parent to the malware, which can’t detect that they’re being

executed within a simulated environment. Yet, simulations don’t let

the malware processes interfere with, infect, or modify other

running processes because no other processes run within the simu-

lation. By not monitoring this interference, valuable information

might be missed. By using a real operating system as CWSandbox’s

base, we allow the malware samples to interfere with the system

with only the limited disturbance created by API hooking.

Another comparable approach is TTAnalyze.1 Like our sandbox,

TTAnalyze uses API hooking, but it differs from our solution in

basically one area: it uses the PC emulator QEMU2 rather than

virtual machines, which makes it harder for the malware to detect

that it’s running in a controlled environment (although it means

no significant difference for the analysis).

A different approach is Chas Tomlin’s Litterbox (www.wiul.

org), in which malware is executed on a real Windows system,

rather than a simulated or emulated one. After 60 seconds of exe-

cution, the host machine is rebooted and forced to boot from a

Linux image. After booting Linux, Litterbox mounts the Windows

partition and extracts the Windows registry and complete file list;

the Windows partition reverts back to its initial clean state. Litterbox

focuses on network activity, so it makes several dispositions of the

simulated network. During malware execution, the Windows host

connects to a virtual Internet with an IRC server running, which

answers positively to all incoming IRC connection requests. The tool

captures all packets to examine all other network traffic afterwards.

This approach is advantageous to CWSandbox because IRC con-

nections are always successful, whereas CWSandbox encounters

malware binaries whose associated C&C server is already mitigated.

However, because Litterbox takes only a snapshot of the infected

system, it can’t monitor dynamic actions such as the creation of

new processes. The Reusable Unknown Malware Analysis Net

(Truman; www.lurhq.com) takes a similar approach.

Galen Hunt and Doug Brubacher introduced Detours, a library

for instrumenting arbitrary Windows functions.3 We opted to

implement our own API hooking mechanism to have greater flexi-

bility and more control over the instrumented functions, but this

library makes it possible to implement an automated approach to

malware analysis that is similar to CWSandbox.

The concepts of system call sequence analysis and API hooking

are well-known in the area of intrusion detection. A typical

approach includes a training phase in which the IDS system

observes system calls of the complete system or specific processes

and creates a profile of “normal” behavior. During operation, the

system call sequences are compared against this profile; upon

detecting a deviation, the system sounds an alarm that indicates

an anomaly. Stephanie Forrest and her coauthors give one of the

earliest descriptions of this approach,4 and Steven Hofmeyr and

colleagues introduced a method for detecting intrusions at the

privileged processes level.5 System call sequence monitoring can

also facilitate process confinement as introduced with Systracer by

Provos.6 Within CWSandbox, we use system call sequence analysis

to observe the behavior of malware processes and construct

detailed reports by correlating the collected data.

References

1. U. Bayer, C. Kruegel, and E. Kirda, “TTanalyze: A Tool for Analyzing Mal-

ware,” Proc. 15th Ann. Conf. European Inst. for Computer Antivirus Research

(EICAR), EICAR Conf. Proceedings, 2006, pp. 180–192.

2. F. Bellard, “QEMU, A Fast and Portable Dynamic Translator,” Proc. Usenix

2005 Ann. Technical Conf. (Usenix ’05), Usenix Assoc., 2005, pp. 41–46.

3. G.C. Hunt and D. Brubacher, “Detours: Binary Interception of Win32 Func-

tions,” Proc. 3rd Usenix Windows NT Symp., Usenix Assoc., 1999, pp.

135–143.

4. S. Forrest et al., “A Sense of Self for Unix Processes,” Proc. 1996 IEEE Symp.

Security and Privacy (S&P 1996), IEEE CS Press, 1996, pp. 120–128.

5. S.A. Hofmeyr, S. Forrest, and A. Somayaji, “Intrusion Detection Using

Sequences of System Calls,” J. Computer Security, vol. 6, no. 3, 1998, pp.

151–180.

6. N. Provos, “Improving Host Security with System Call Policies,” Proc. 12th

Usenix Security Symp. (Security ’03), Usenix Assoc., 2003, pp. 257–271.

Malware

original function or returns directly to the application
performing the API call, depending on the type of API
function called. After the original API call returns, the
hook function inspects the result and might modify it be-
fore returning to the calling malware application.

Because the malware sample shouldn’t be aware that
it’s being executed inside a controlled environment, the
cwmonitor.dll implements some rootkit functional-
ity: all of the sandbox’s system objects are hidden from the
malware binary, including modules, files, registry entries,
mutual exclusion events (mutexes), and handles in gen-
eral. This at least makes it much harder for the malware
sample to detect the sandbox’s presence. (This approach
isn’t undetectable, but our evaluation results show that
CWSandbox generates valuable reports in practice.)

During the execution phase, heavy interprocess
communication (IPC) occurs between the cwmoni-
tor.dll and cwsandbox.exe. Each API hook func-
tion informs the sandbox via a notification object about
the call and its parameters. Some hook functions require
an answer from the sandbox that determines which ac-
tion to take, such as whether to call the original API
function. A heavy communication throughput exists
because each notification object must transmit a large
amount of data and several DLL instances can exist. Be-
sides the high performance need, reliability is crucial be-
cause data must not be lost or modified on its way. Thus,
we had to implement a reliable inter-process communi-
cation (IPC) mechanism with high throughput so we
used a memory-mapped file with some customizations
that fit our needs.

The execution phase lasts for as long as the malware
executes, but the sandbox can end it prematurely when a
timeout occurs or if critical conditions require instant
termination of the malware.

Analysis phase
In the last phase, the sandbox analyzes the collected data and
generates an XML analysis report. To measure the report’s
accuracy, we examined several current malware binaries
and compared the results with reports generated by the
Norman Sandbox and Symantec via manual code analysis.

Because the CWSandbox analyzes live systems and
lets us observe how the malware binary interacts with
other processes, its results were more detailed than those
the Norman Sandbox provides. However, both tools gen-
erated reports that detected file system changes, registry
modifications, mutex creation, or process-management
actions. Only small differences between the tools exist—
the reports differed if the malware binary used a random
file name when it copied itself to another location, for
example. Moreover, a disadvantage of Norman Sandbox
is that only limited Internet connection is available; if the
malware tries to download additional content from a re-
mote location, Norman Sandbox detects it, but can’t au-

tomatically analyze the remote file. In contrast,
CWSandbox observes the download request and, if the
malware downloads and executes a file, performs DLL
injection to enable API hooking on the new process.

Compared with the reports from Symantec’s manual
code analysis, the sandbox reported the important ac-
tions, but it failed to detect small details and behavior
variants (the creation of certain event objects, for exam-
ple) because the corresponding API calls weren’t hooked
in the current implementation. By adding hooks to these
API calls, we could extend CWSandbox’s analysis capa-
bilities. Symantec’s manual code analysis didn’t contain
any details that weren’t in our analysis report.

We executed the malware sample for a specific time
period, so we used it to tune CWSandbox’s throughput.
We found that executing the malware for two minutes
yielded the most accurate results and allowed the malware
binary enough time to interact with the system, thus
copying itself to another location, spawning new
processes, or connecting to a remote server, and so on.

Large-scale analysis
We conducted a larger test to evaluate CWSandbox’s re-
port throughput and quality. We analyzed 6,148 malware
binaries that we collected in a five-month period be-
tween June and October 2006 with nepenthes, a honey-
pot solution that automatically collects autonomous
spreading malware.3 Nepenthes emulates the vulnerable
parts of a network’s services to the extent that an auto-
mated exploit is always successful. Autonomous spread-
ing malware such as bots and worms thus think that
they’ve exploited the system, but rather than infecting a
“victim,” they’re delivering to us a binary copy of the
malware. Thus, our test corpus is real malware spreading
in the wild; we’re sure that all of these binaries are mali-
cious because we downloaded them after successful ex-
ploitation attempts in nepenthes.

For the analysis process, we executed the sandbox on
two commercial off-the-shelf systems with Intel Pen-
tium IV processors running at 2 GHz and with 2 GBytes
of RAM. Each system ran Debian Linux Testing and had
two virtual machines based on VMware Server and
Windows XP as guest systems. Within the virtual ma-
chines, we executed CWSandbox, effectively running
four parallel environments. We stored the malware bina-
ries in a MySQL database to which our analysis systems
wrote all reports.

The antivirus engine ClamAV classified these samples
as 1,572 different malware types. Most of them were dif-
ferent bot variants, particularly of Poebot and Padobot.
Of the 6,148 samples, ClamAV classified 3,863 as mali-
cious, most likely because signatures for the remaining
binaries weren’t available. The antivirus engine should
have classified 100 percent of the samples as malicious,
but it detected only 62.8 percent in this case.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 37

Malware

CWSandbox analyzed all these binaries in roughly 67
hours: the effective throughput was more than 500 bina-
ries per day per instance, which is at least an order of mag-
nitude faster than human analysis. An analyst can use the
resulting report as a high-level overview and analyze the
binary deeper manually, if necessary.

Of the 324 binaries that tried to contact an Internet
relay chat (IRC) server, 172 were unique. Because we ex-
tracted information such as the IRC channel or passwords
used to access the command and control servers from the
samples, we were able to mitigate the botnet risk.

Additionally, 856 of the 6,148 samples contacted
HTTP servers and tried to download additional data from
the Internet. By observing how the malware handled the
downloaded data, we learned more about the infection
stages, which ranged from downloading executable code
to click fraud (automated visits to certain Web pages).

We observed 78 malware binaries that tried to use the
Simple Mail-Transfer Protocol (SMTP) as a communi-

cation protocol. We recorded the destination emails and
the message bodies, so we got complete information
about what the malware wanted to do, which let us de-
velop appropriate countermeasures.

More than 95 percent of the malware binary samples
added registry keys to enable autostart mechanisms. Mu-
texes are also quite common to ensure that only one in-
stance of the malware binary is running on a compromised
host. We commonly saw malware binaries copy them-
selves to the Windows system folder. These patterns let us
automatically define suspect behavior, and we could ex-
tend CWSandbox to automatically classify binaries as nor-
mal or malicious on the basis of observed behaviors.

W e’ve shown that it’s possible to automate binary
analysis of current Win32 malware using CW-

Sandbox. Such a tool lets analysts learn more about current
malware, and the resulting analysis reports help the analyst

38 IEEE SECURITY & PRIVACY ■ MARCH/APRIL 2007

Sample analysis report

As Figure A illustrates, CWSandbox analysis reports are quite

detailed. They let analysts quickly estimate what a malware binary

does and whether it needs to be further analyzed manually. With the

behavior-based approach, we get a quick overview of the binary,

Figure A. CWSandbox analysis report. The report contains detailed information about the analyzed processes, including

- <analysis cwsversion="Beta 1.83" time="22.11.2006 15:26:14"

file="94c87c1c05d8f9628b789bced23f9ab3.exe"

logpath="c:\analysis\log\94c87c1c05d8f9628b789bced23f9ab3.exe\run_1\">

- <calltree>

- <process_call filename="c:\94c87c1c05d8f9628b789bced23f9ab3.exe"

starttime="00:00.046" startreason="AnalysisTarget">

- <calltree>

<process_call filename="C:\WINDOWS\system32\qodxih.exe C:\WINDOWS\system32\qodxih.exe

1428 c:\94c87c1c05d8f9628b789bced23f9ab3.exe" starttime="00:05.765"

startreason="CreateProcess"/>

</calltree>

</process_call>

</calltree>

- <processes>

- <process index="1" pid="884" filename="c:\94c87c1c05d8f9628b789bced23f9ab3.exe"

filesize="173595" md5="94c87c1c05d8f9628b789bced23f9ab3" username="foobar"

parentindex="0" starttime="00:00.046" terminationtime="00:06.281" startreason=

"AnalysisTarget" terminationreason="NormalTermination" executionstatus="OK">

+ <dll_handling_section></dll_handling_section>

+ <filesystem_section></filesystem_section>

+ <mutex_section></mutex_section>

+ <registry_section></registry_section>

+ <process_section></process_section>

+ <system_info_section></system_info_section>

Malware

determine whether a manual analysis is necessary. In the
future, we plan to extend CWSandbox with kernel-based
hooking, which will let us monitor kernel mode rootkits
and other kernel-based malware. Futhermore, we intend
to explore the ways in which we can use the CWSandbox-
generated reports for malware classification.

References
1. I. Ivanov, “API Hooking Revealed,” The Code Project,

2002; www.codeproject.com/system/hooksys.asp.
2. Holy Father, “Hooking Windows API—Technics of

Hooking API Functions on Windows,” CodeBreakers J.,
vol. 1, no. 2, 2004; www.secure-software-engineering.
com/index.php?option=com_content&task=view&id
=54&Itemid=27.

3. P. Baecher et al., “The Nepenthes Platform: An Efficient
Approach to Collect Malware,” Proc. 9th Int’l Symp. Recent
Advances in Intrusion Detection (RAID 06), LNCS 4219,
Springer-Verlag, 2006, pp. 165–184.

Carsten Willems is a PhD student in the Laboratory for
Dependable Distributed Systems at the University of
Mannheim, Germany. His research interests include malware
research, including the analysis of Win32 malware. Willems
has a MS in computer science from RWTH Aachen University,
Germany. He is the author of CWSandbox, a tool for auto-
matic behavior analysis. His company, CWSE GmbH deals
with software development in IT security. Contact him at
cwillems@consolo.de.

Thorsten Holz is a PhD student in the Laboratory for Depend-
able Distributed Systems at the University of Mannheim, Ger-
many. His research interests include honeypots, botnets,
malware, and intrusion detection systems. Holz has an MS in
computer science from RWTH Aachen University, Germany. Con-
tact him at thorsten.holz@informatik.uni-mannheim.de.

Felix Freiling is a professor of computer science and heads the
Laboratory for Dependable Distributed Systems at the Univer-
sity of Mannheim, Germany. His research interests include the
theory and practice of dependability. Freiling has a PhD in com-
puter science from Darmstadt University of Technology, Ger-
many. Contact him at freiling@informatik.uni-mannheim.de.

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 39

which is generally sufficient to extract the most important information.

You can view complete sample reports at www.cwsandbox.org,

as well as submit samples for analysis. The system returns analysis

reports via email.

+ <winsock_section></winsock_section>

</process>

- <process index="2" pid="1348" filename="C:\WINDOWS\system32\qodxih.exe C:\WIN-

DOWS\system32\qodxih.exe 1428 c:\94c87c1c05d8f9628b789bced23f9ab3.exe" filesize=

"-1" username="foobar" parentindex="1" starttime="00:05.765"

terminationtime="02:00.781" startreason="CreateProcess"

terminationreason="Timeout" executionstatus="OK">

+ <dll_handling_section></dll_handling_section>

+ <filesystem_section></filesystem_section>

+ <mutex_section></mutex_section>

+ <registry_section></registry_section>

+ <process_section></process_section>

+ <system_info_section></system_info_section>

+ <window_section></window_section>

- <winsock_section>

+ <connections_unknown></connections_unknown>

+ <connections_listening></connections_listening>

- <connections_outgoing>

- <connection transportprotocol="TCP" remoteaddr="208.99.207.143"

remoteport="8453" protocol="IRC" connectionestablished="1" socket="608">

- <irc_data username="DEU|7907101" nick="DEU|7907101">

<channel name="####test####" password="nikne" topic_deleted=":.join #a,#b,#c"/>

</irc_data>

</connection></connections_outgoing>

information about changes to the file system, the Windows registry, and the data sent via Winsock.

