Assisting users in a world full of cameras: A privacy-aware infrastructure for computer vision applications

Anupam Das, Martin Degeling, Xiaoyou Wang, Junjue Wang, Normand Sadeh, Mahadev Satyanarayanan

Computer Vision and Pattern Recognition Workshops (CVPRW)


Abstract

Computer vision based technologies have seen widespread adoption over the recent years. This use is not limited to the rapid adoption of facial recognition technology but extends to facial expression recognition, scene recognition and more. These developments raise privacy concerns and call for novel solutions to ensure adequate user awareness, and ideally, control over the resulting collection and use of potentially sensitive data. While cameras have become ubiquitous, most of the time users are not even aware of their presence. In this paper we introduce a novel distributed privacy infrastructure for the Internet-of-Things and discuss in particular how it can help enhance user’s awareness of and control over the collection and use of video data about them. The infrastructure, which has undergone early deployment and evaluation on two campuses, supports the automated discovery of IoT resources and the selective notification of users. This includes the presence of computer vision applications that collect data about users. In particular, we describe an implementation of functionality that helps users discover nearby cameras and choose whether or not they want their faces to be denatured in the video streams.

[pdf]

Tags: